
princeton univ. F’25 cos 521: Advanced Algorithm Design

Lecture 4: Hashing II

Lecturer: Huacheng Yu

Today, we will look at hashing schemes for different settings or which achieve better
bounds. We will assume access to fully random hash functions.

1 Consistent Hashing

In this setting, we want to hash m items (which we denote by M) to n buckets (which we
denote by N), where m ≫ n ≫ 1. We want to be able to handle insertion and deletion of
items and buckets. The goal is to design a hash function which

• Hashes ≈ m/n items to each bucket,

• Can perform insertion/deletion while relocating few items, and

• Can perform fast lookup.

Consider the non-standard fully random hash function h : (M ∪ N) → [0, 1), where we
interpret [0, 1) as a circle (note that h can be discretized to a large range like [264] with
minimal changes to the analysis). For any set of buckets Y ̸= ∅, Define the Y -successor of
an item x to be the bucket y ∈ Y which is closest to x in the clockwise direction. Formally,

Y -successor of x =

{
argminy∈Y,h(y)≥h(x) h(y) {y ∈ Y : h(y) ≥ h(x)} ≠ ∅
argminy∈Y h(y) o.w.

Then we implement the hash table operations as follows:

• Lookup: given item x and currently inserted buckets Y , compute the Y -successor of
x, which can be done with a BST in O(log(n)) time.

• Bucket insertion/deletion: insert or delete the bucket y with key h(y) from the BST
in O(log(n)) time.

• Item insertion/deletion: no action needed (can use other data structures if you want
to track, e.g., items associated with each bucket).

Let Zy,X,Y be the number of items in bucket y when items X and buckets Y are inserted.
Then since h is uniformly random,

E[Zy,X,Y] =
|X|
|Y |

.

We will not perform the computation, but we can show that

Var[Zy,X,Y] = O

(
|X|2

|Y |2

)
.

This says the standard deviation of the number of items in each bucket is on the order of
the expectation, which is pretty bad.

1

2

1.1 Reducing the Variance

The majority of the variance is coming from the fact that there is high variance in the
size of the interval between buckets. This can be reduced in the following way: instead
of using h : (M ∪ N) → [0, 1), use a hash function over the larger bucket domain of
h : (M ∪ (N × [k])) → [0, 1). Then when we insert/delete a bucket y, we add/remove all
k points h(y, 1), . . . , h(y, k) to the circle. We redefine the Y -successor of x to be the “sub-
bucket” (y, ℓ) such that h(y, ℓ) is closest to h(x) in the clockwise direction, and lookup an
item x by finding the bucket y associated with the Y -successor of x.

Let Zy,ℓ,X,Y be the number of items in sub-bucket (y, ℓ). Since the effect of turning each
bucket y into k sub-buckets (y, 1), . . . , (y, k) is to essentially blow up the size of Y by a
factor of k, we have

E[Zy,X,Y] =

k∑
ℓ=1

E[Zy,ℓ,X,Y] =

k∑
ℓ=1

|X|
k|Y |

=
|X|
|Y |

and (since variance of a sum of independent r.v.s is the sum of the variances)

Var[Zy,X,Y] =
k∑

ℓ=1

Var[Zy,ℓ,X,Y] ≈
k∑

ℓ=1

O

(
|X|2

k2|Y |2

)
= O

(
|X|2

k|Y |2

)
.

Note that the actual variance is

Var[Zy,X,Y] = O

(
|X|2

k|Y |2
+

|X|
|Y |

)
because the number of items hashing to each interval also influences the variance, and this
term dominates when the number of sub-buckets becomes large.

Observe that bucket insertions/deletions now take O(k log(n)) time, but as long as
k = poly(n), accesses still only take O(log(nk)) = O(log(n)) time.

2 Power of Two Choices

Let us return to a simpler setting from last week: we want to hash n items (insertion only)
to n (fixed) buckets.

Let h1, h2 : [n] → [n] be independent fully random hash functions from items to buckets,
and consider the following hashing scheme: when inserting item x, check which bucket of
h1(x), h2(x) has fewer items and store it in that bucket.

Last week, we saw that if we just use one hash function, we could only guarantee that
the max-load was O(log(n)/ log log(n)) w.h.p. using a Chernoff bound. We will now show
that using the above two hash function scheme, the max-load is only O(log log(n)) w.h.p.,
an exponential improvement. Consider the following informal argument:

1. Define βk to be the number of buckets with ≥ k items.

2. Observe that if inserting item x creates a new bucket with ≥ k+1 items, then buckets
h1(x), h2(x) must both have ≥ k items.

3

3. The probability that this occurs is ≈ (βk/n)
2 (conditioned on βk), so summing over

the n items, E[βk+1 |βk] ≈ β2
k/n. Note that this is imprecise because after conditioning

on βk, the hash functions h1, h2 are no longer fully random.

4. Using Chernoff bounds, we can show that βk+1 ≲ β2
k/n w.h.p.

5. Since there are only n items, β2 ≤ n/2. We can then inductively reason that βk ≲
n · 2−2k−2

, so βO(log log(n)) = 0 w.h.p.

To formalize this reasoning, we first need to define β
(t)
k to be the number of buckets with ≥ k

items after the tth item is inserted (to formalize step (2)). Then reasoning as outlined above,

we can show that β
(t)
k ≤ max{2−2k−2

, O(log(n))} w.p. 1 − poly(n), where the O(log(n))
is necessary for the statement to hold w.h.p. via Chernoff bound. Therefore, for some

k∗ = O(log log(n)), we have β
(t)
k∗ = O(log(n)). We can then directly reason that β

(t)
k∗+1 = 0

w.p. 1− Õ(1/n).
What happens if we have d hash functions and store each item in the least occupied

bucket among d choices? Then we would have the relation βk+1 ≲ βd
k/n

d−1, which yields

βk ≤ n · 2−dk−O(1)
, which gives us a max-load of O(log log(n)/ log(d)). So when d = O(1),

we don’t see any asymptotic improvement beyond two choices.

2.1 Cuckoo Hashing

Now, suppose we want to store m items into a hash table of size n ≥ 10m, where each
entry of the hash table can only store one item. Let h1, h2 : [m] → [n] be independent fully
random hash functions.

Cuckoo hashing is the following scheme: when item x is inserted, store it in h1(x) or
h2(x) if either is empty. Otherwise, store x in h1(x), and kick out the old item in h1(x) to
its alternate slot. Repeat until we find an empty entry for the kicked out item(s) or a cycle.
If we find a cycle, sample new h1, h2 and rebuild the entire hash table.

To analyze cuckoo hashing, we can treat the n entries of the hash table as vertices and
the m items as edges of a graph, where item x forms an edge between vertices h1(x), h2(x).

Theorem 1. The probability that we find a cycle during insertion is at most 1/4.

Proof. Observe that a cycle is found during insertion only if a cycle exists in the graph
induced by the hash table. Since h1, h2 are independent fully random hash functions, each
edge of the graph exists w.p. at most m/

(
n
2

)
≤ (n/10)(2/n2) = 1/(5n).

Therefore, for a fixed cycle of length k, the probability it exists is at most 1/(5n)k (all
k of its edges need to be present, presence of edges is negatively correlated). As there are
at most nk cycles of length k, the probability that any cycle of length k exists is at most
5−k by a union bound. Another union bound shows that the probability that a cycle of any
length exists is at most

∑
k∈[n] 5

−k ≤ 1/4.

In a similar vein, the time to insert an item x is bounded by the size of the connected
component the edge h1(x), h2(x) belongs to. Since each edge of the graph exists w.p. at most
1/(5n), the graph is very sparse, and it turns out that the expected size of each connected
component (and hence the expected insertion time) is O(1).

